Mathematical Model of the Firefly Luciferase Complementation Assay Reveals a Non-Linear Relationship between the Detected Luminescence and the Affinity of the Protein Pair Being Analyzed.

نویسندگان

  • Renee Dale
  • Yuki Ohmuro-Matsuyama
  • Hiroshi Ueda
  • Naohiro Kato
چکیده

The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and Purification of the luciferase enzyme and in Vivo ATP Assay

Introduction: Gene expression and purification of luciferases from the firefly, Lampyris turkestanicus, and optimization of cellular ATP measurements were performed. Methods: cDNA encoding luciferases from Lampyris turkestanicus was transferred from pQE30 vector into pET28a expression vector and pLtu28 was built. Newly constructed vector was expressed in E. coli XL1 Blue and the recombinant l...

متن کامل

A general approach for receptor and antibody-targeted detection of native proteins utilizing split-luciferase reassembly.

The direct detection of native proteins in heterogeneous solutions remains a challenging problem. Standard methodologies rely on a separation step to circumvent nonspecific signal generation. We hypothesized that a simple and general method for the detection of native proteins in solution could be achieved through ternary complexation, where the conditional signal generation afforded by split-p...

متن کامل

Measurement of Michaelis Constants for ATP and Mg2+ in Bioluminescence Reaction of Luciferase by a Home-Made Luminometer

Effects of ATP and Mg2+ concentrations on bioluminescence reaction of luciferase (Photinus pyralis) were investigated by home-made luminometer. The Michaelis constants of the enzyme for ATP and Mg2+ obtained from the Lineweaver-Burk graph, were 61.9 mM ±3.3 mM and 251.6mM ± 39.0mM...

متن کامل

Breakthrough Technologies Firefly Luciferase Complementation Imaging Assay for Protein-Protein Interactions in Plants1[C][W][OA]

The development of sensitive and versatile techniques to detect protein-protein interactions in vivo is important for understanding protein functions. The previously described techniques, fluorescence resonance energy transfer and bimolecular fluorescence complementation, which are used widely for protein-protein interaction studies in plants, require extensive instrumentation. To facilitate pr...

متن کامل

Firefly Luciferase Complementation Imaging Assay for Protein-Protein Interactions in Plants1[C][W][OA]

The development of sensitive and versatile techniques to detect protein-protein interactions in vivo is important for understanding protein functions. The previously described techniques, fluorescence resonance energy transfer and bimolecular fluorescence complementation, which are used widely for protein-protein interaction studies in plants, require extensive instrumentation. To facilitate pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2016